Jill O’Donnell-Tormey, Ph.D.
Cancer Research Institute

WELCOME
This event is made possible with generous support from:

- Bristol-Myers Squibb
- MERCK
- gsk
- AstraZeneca
- Genentech
- NOVARTIS
- REGENERON
Our Promotional Partners

A special thank you to those who helped promote the summit

- Addario Lung Cancer Foundation
- Bay Area Cancer Connections
- Coalition for Clinical Trial Awareness
- Colon Cancer Alliance
- Cancer Support Community
- Fight Colorectal Cancer
- Focused Ultrasound Foundation
- FORCE
- GI Cancers Alliance
- Head and Neck Cancer Alliance
- Imerman Angels
- Immunotherapy Foundation
- Let Life Happen
- Parker Institute for Cancer Immunotherapy
- Patient Empowerment Network
- UCSF Helen Diller Family Comprehensive Cancer Center
Our Guest Faculty

Scientific Experts

Ezra Cohen, M.D.
University of California San Diego

Lewis Lanier, Ph.D.
University of California San Francisco

Aaron Miller, M.D., Ph.D.
University of California San Diego

Stanley Riddell, M.D.
Fred Hutchinson Cancer Research Center

Patient & Caregiver Experts

Janie Ferling
Melanoma Survivor

Johanna Packard
Caregiver (Prostate Cancer)

Philip Prichard
Kidney Cancer Survivor
Lewis Lanier, Ph.D.
UCSF Helen Diller Family Comprehensive Cancer Center
Parker Institute for Cancer Immunotherapy

IMMUNOTHERAPY BASICS
Cut ‘em, Burn ‘em, Poison ‘em
We now have a new weapon against cancer – your immune system
The New York Times

Patient’s Cells Deployed to Attack Aggressive Cancer

The Washington Post

Health & Science

New therapies raise hope for a breakthrough in tackling cancer
Paul Ehrlich (1909) Concept of cancer immunosurveillance. Predicted that cancer would occur at “incredible frequency” if host defenses did not prevent the outgrowth of continuously arising cancer cells

Lewis Thomas (1957) “primary function of cellular immunity…is to protect from neoplastic disease”

Macfarland Burnet (1957) “It is by no means inconceivable that small accumulations of tumour cells may develop and because of their possession of new antigenic potentialities provide an effective immunological reaction with regression of this tumor and no clinical hint of its existence”
Mice without T and B cells

Mice without T and B cells and unable to respond to interferons
Cancer Immunotherapy

In the beginning....Dr. William Coley 1890s

Treating cancer with bacterial products to stimulate the patient’s immune system
Immunity to Cancer – The Players

Antibodies
– made by your B cells or given as drugs

Myeloid cells
– good ones stimulate the immune system (dendritic cell) and kill tumors (macrophages)
– bad ones suppress immune responses

T cells and Natural Killer cells
– good ones kill tumors (cytotoxic and helper T, NK)
– bad ones suppress immune responses (Treg)
Using Antibodies to Boost the Immune Response to Cancer

Monoclonal antibody coats tumor cells

Natural Killer cells and macrophages with Fc receptors bind to the tail (Fc) of the antibody and kill the tumor

Rituximab – targets CD20 on B cell tumors
Trastuzumab – targets her2 on breast cancer
Daratumumab – targets CD38 on myeloma
CetuximAb – targets EGFR on colon cancer
Using Antibodies to Boost the Immune Response to Cancer

Monoclonal Antibody
Anti-myeloma activity

Myeloma Cell

Surface Marker
eg CD38

Monoclonal Antibody
eg Daratumumab

NK Cell

Fc Receptor
Immune Cells Are Controlled by a Balance of Activating and Inhibitory Signals

T cells and Natural Killer cells
Kill & expand
Inhibit
Killing & expansion

Activating receptor
Activating protein
Inhibitory Receptor
Inhibiting protein

Tumor cells

Fail-safe prevents immune cells from attacking healthy self tissues (autoimmunity)
“Checkpoint Blockade” - Use Antibodies to Block the Inhibitory Receptors to Boost the Immune Response

Activating protein

Activating receptor

Inhibitory Receptor

Tumor cells

Kill & expand

Inhibit

Killing & expansion

T cells and Natural Killer cells

Block the inhibitory signal
- Enhance tumor killing!

Inhibiting protein
Checkpoint Inhibitors – Antibodies to Inhibitory PD-1 Receptor
CTLA-4 Blockade: Anti-Tumor Immunity, but Autoimmunity

The good news....

Lung

Lung

Brain

The bad news....

Skin

Colon

Colon CD3

Liver

Phan et al. PNAS (2003) 100:8372
Checkpoint Blockade Success!

New immunotherapy drug behind Jimmy Carter’s cancer cure

Former president given pembrolizumab, one of the most promising new drugs in the treatment of cancer.
Using Antibodies to Block Inhibitory Receptors or Stimulate Activating Receptors Boosts Immune Responses
Activating protein T cells and NK cells

Activating receptor

Costimulatory Receptor

Agonist antibody to Costimulatory Receptor
Enhances Immune Response

Tumor cells

T cells and NK cells

Kill & expand

Boosts

Activating receptor
Combined PD-1 and CTLA-4 Blockade in Melanoma Pts

PFS Among BRAF WT Patients

- PFS among BRAF MT patients (8.5 mo for NIVO + IPI, 2.7 mo for IPI monotherapy) was similar to that observed among BRAF WT patients

HR = hazard ratio
Table 3 Clinical trials of combination therapies with molecularly targeted drugs

<table>
<thead>
<tr>
<th>PD-1/PD-L1 mAb</th>
<th>Combination</th>
<th>Tumor</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD-1 mAb (Nivolumab)</td>
<td>LAG3 (BMS-986016)</td>
<td>Solid Tumors</td>
<td>NCT01968109</td>
</tr>
<tr>
<td>PD-1 mAb (Nivolumab)</td>
<td>B7-H3 (Enoblituzumab)</td>
<td>Solid Tumors</td>
<td>NCT02817633</td>
</tr>
<tr>
<td>PD-1 mAb (Pembrolizumab)</td>
<td>B7-H3 (Enoblituzumab)</td>
<td>Solid Tumors</td>
<td>NCT02475213</td>
</tr>
<tr>
<td>PD-1 mAb (Nivolumab)</td>
<td>KIR (Lirilumab)</td>
<td>Solid Tumors</td>
<td>NCT01714739</td>
</tr>
<tr>
<td>PD-L1 mAb (MEDI4736)</td>
<td>OX40 (MEDI6383)</td>
<td>Solid Tumors and B-cell non-Hodgkin lymphoma</td>
<td>NCT02221960</td>
</tr>
<tr>
<td>PD-1 mAb (Nivolumab)</td>
<td>4-1BB (Urelumab)</td>
<td>Solid Tumors</td>
<td>NCT02253992</td>
</tr>
<tr>
<td>PD-1 mAb (Nivolumab)</td>
<td>ICOS (JTX-2011)</td>
<td>Solid Tumors</td>
<td>NCT02904226</td>
</tr>
<tr>
<td>Pd-1 mAb (PDR001)</td>
<td>GITR (GWN323)</td>
<td>Solid Tumors and Lymphomas</td>
<td>NCT02740270</td>
</tr>
<tr>
<td>PD-1 mAb (Nivolumab)</td>
<td>CD27 (Variliumab)</td>
<td>Solid Tumors</td>
<td>NCT02335918</td>
</tr>
<tr>
<td>PD-L1 mAb (Atezolizumab)</td>
<td>CD27 (Variliumab)</td>
<td>Solid Tumors</td>
<td>NCT02543645</td>
</tr>
<tr>
<td>PD-1 mAb (Nivolumab)</td>
<td>GM.CD40L (vaccine for NSCLC)</td>
<td>Lung (NSCLC)</td>
<td>NCT02466568</td>
</tr>
<tr>
<td>PD-L1 mAb (Atezolizumab)</td>
<td>VEGF inhibitors (Bevacizumab cediranib)</td>
<td>Ovarian Cancer</td>
<td>NCT02659384</td>
</tr>
<tr>
<td>PD-L1 mAb (MEDI4736)</td>
<td>PARP inhibitors (Olaparib)</td>
<td>S tumors</td>
<td>NCT02484404</td>
</tr>
<tr>
<td>PD-L1 mAb (MEDI4736)</td>
<td>Multi-kinase inhibitor (Sunitinib)</td>
<td>Solid tumors</td>
<td>NCT02484404</td>
</tr>
<tr>
<td>PD-1 mAb (Pembrolizumab) with SBRT</td>
<td>Multi-kinase inhibitor (Sunitinib)</td>
<td>TKI refractory mRCC<sup>a</sup></td>
<td>NCT02599779</td>
</tr>
<tr>
<td>PD-L1 mAb (Durvalumab)</td>
<td>EGFR inhibitor (Osimertinib)</td>
<td>Lung (NSCLC)</td>
<td>reference [70]</td>
</tr>
</tbody>
</table>

^a Tyrosine kinase inhibitor refractory metastatic recalc cell cancer
Autoimmunity Caused by Checkpoint Blockade - combinations can increase toxicity

CTLA-4 CTLA-4 + PD-1 PD-1 PD-1
Tumor-specific “neo-antigens”
 – Expressed ONLY by tumors due to genetic mutations

Tumor-associated antigens
 – Preferentially expressed by tumors (overexpressed normal proteins due to gene amplification or epigenetics)

Oncofetal antigens
 – Expressed by tumors in adult, but also expressed by fetal (not adult) tissues

Viral antigens
 – Expressed by oncogenic viruses (HPV, EBV, KSV)
Genetic Mutations Are Frequent in Some Tumors (Melanoma, Lung, etc.) – Rare in Others

Science 2015 – Schumacher & Schreiber
Adoptive T Cell Therapy

T cell with tumor-specific T cell receptor

T cell with engineered Chimeric Antigen Receptor (CAR)
Adoptive T cell therapy using antigen-specific CD8\(^+\) T cell clones for the treatment of patients with metastatic melanoma: In vivo persistence, migration, and antitumor effect of transferred T cells

C. Yee\(*\dagger\), J. A. Thompson\(*\), D. Byrd\(*\), S. R. Riddell\(*\), P. Roche\(\dagger\), E. Celis\(\dagger\), and P. D. Greenberg\(*\)
Adoptive “CAR” T cell therapy

Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia

David L. Porter, M.D., Bruce L. Levine, Ph.D., Michael Kalos, Ph.D., Adam Bagg, M.D., and Carl H. June, M.D.

- Isolate patient’s peripheral blood T cells
- Lentivirus transduced with “CAR” (chimeric antigen receptor)
- CAR – anti-CD19 antibody fragment fused to intracellular domains of potent T cell signaling subunits
- Re-infuse “CAR”-modified T cells into patient
- Successful for treating children with B cell malignancies (toxicity – loss of normal B cells – forever?; cytokine storm)
In Girl’s Last Hope, Altered Immune Cells Beat Leukemia

By DENISE GRADY DEC. 8, 2012

Emma Whitehead, with her mother, Karla. Last spring, Emma was near death from acute lymphoblastic leukemia but is now in remission after an experimental treatment at the Children’s Hospital of Philadelphia. Jeff Swensen for The New York Times
Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

Shannon L. Maude, M.D., Ph.D., Noelle Frey, M.D., Pamela A. Shaw, Ph.D.,
Richard Aplenc, M.D., Ph.D., David M. Barrett, M.D., Ph.D.,
Nancy J. Bunin, M.D., Anne Chew, Ph.D., Vanessa E. Gonzalez, M.B.A.,
Zhaoxue Zheng, M.S., Simon F. Lacey, Ph.D., Yolanda D. Mahnke, Ph.D.,
Jan J. Melenhorst, Ph.D., Susan R. Rheingold, M.D., Angela Shen, M.D.,
David T. Teachey, M.D., Bruce L. Levine, Ph.D., Carl H. June, M.D.,
David L. Porter, M.D., and Stephan A. Grupp, M.D., Ph.D.

- 0.76×10^6 to 20.6×10^6 CTL019 cells/kg IV
- 27/30 (90%) children and adults with relapsed ALL achieved complete remission
- All patients developed a cytokine release syndrome
- 73% with relapse-free B cell aplasia.

Maude, NEJM 2014
Active Immunotherapy Vaccination
A decade on, vaccine has halved cervical cancer rate

29 August 2016 | Australia
Successful Active Vaccination Against Virus-Induced Cancers

• Vaccine to feline leukemia virus for cats
• Vaccine to herpes virus (Marek’s virus) in chickens
• Vaccine to hepatitis B in humans to prevent liver carcinoma
• Vaccination to HPV prevents cervical cancer
How Tumors Escape the Immune System

- Loss of MHC or TAP
- Antigenic variation
- Upregulate inhibitory receptor ligands (e.g. PD-1L)
- Secretion of immunosuppressive factors
 - e.g. TGF-b, IL-10
- T cells don’t penetrate solid tumors efficiently
- Exhaustion of T cells
- T regulatory cells suppress anti-tumor responses
Useful resources about cancer immunotherapy

https://www.cancerresearch.org/we-are-cri/what-is-immunotherapy

https://www.mskcc.org/immunotherapy-msk

https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/immunotherapy.html

https://www.mdanderson.org/treatment-options/immunotherapy.html

Panel Discussion

LATEST RESEARCH UPDATE
Scientific Panel

Moderator

Lewis Lanier, Ph.D.

Panel

Ezra Cohen, M.D.
Head and Neck Cancers

Aaron Miller, M.D., Ph.D.
Colorectal Cancer

Stanley Riddell, M.D.
Blood Cancer
Janie Ferling
Melanoma Survivor

PATIENT PERSPECTIVE
LUNCH AND NETWORKING

Floor 3 - Gallery
Brian Brewer
Cancer Research Institute

DEMYSTIFYING CLINICAL TRIALS
What Are Clinical Trials?

- Clinical trials are research studies that involve people.
- Studies are designed to answer questions about new treatments or ways of using existing treatments better.
- Researchers design cancer clinical trials to test new ways to:
 - Treat cancer
 - Find and diagnose cancer
 - Prevent cancer
 - Manage symptoms of cancer and side effects from its treatment
- Through clinical trials, doctors find new ways to improve treatments and the quality of life for people with disease.

National Cancer Institute. (October 2016). *Taking part in cancer treatment research studies.* (NIH Publication No. 16-6249)
Why Are Clinical Trials Important?

- Many treatments today are the results of past clinical trials.
- Clinical trials determine whether new treatments are safe and effective and are better than current treatments.
- Participating in a clinical trial adds to our knowledge of cancer and helps improve cancer treatment for future patients.
- Clinical trials are key to making progress against cancer.

National Cancer Institute. (October 2016). *Taking part in cancer treatment research studies.* (NIH Publication No. 16-6249)
What Are Clinical Trial Phases?

Phase 1
- Is the treatment safe?
- Purpose:
 - To find a safe dose
 - To decide how the new treatment should be given
 - To see how the new treatment affects the human body and fights cancer
- Number of people: 15-30

Phase 2
- Does it work?
- Purpose:
 - To determine if the new treatment has an effect on a certain cancer
 - To see how the new treatment affects the human body and fights cancer
- Number of people: <100

Phase 3
- Does it work better?
- Purpose:
 - To compare the new treatment (or new use of a treatment) with the current standard treatment
- Number of people: 100-2k +

National Cancer Institute. (October 2016). *Taking part in cancer treatment research studies*. (NIH Publication No. 16-6249)
Who Can Participate in a Clinical Trial?

• Clinical trials follow strict guidelines that determine who will be able to join the study.

• The clinical trial protocol explains what the trial will do, how it will be conducted, and the criteria of who can join.

• Common criteria for entering a trial include:
 – Having a certain type or stage of cancer
 – Having received (or not having received) a certain type of therapy in the past
 – Having specific genetic changes in your tumor
 – Being in a certain age group
 – Medical history, current health status
How Can I Find a Clinical Trial?

• Ask your doctor

• Ask another doctor if necessary...

• Contact a patient advocacy organization
 – Seek assistance from a clinical trial navigator, if offered
 – CRI Clinical Trial Finder: 1 (855) 216-0127

• Search online
 – https://www.cancerresearch.org/patients/clinical-trials
 – https://clinicaltrials.gov/
Patient and Caregiver Panel

Moderator

Brian Brewer

Panel

Janie Ferling
Melanoma

Johanna Packard
Caregiver (Prostate Cancer)

Philip Prichard
Kidney Cancer
BREAKOUT SESSIONS
Breakout Rooms

Blood Cancers
Stanley Riddell, M.D.

Colorectal Cancer
Aaron Miller, M.D., Ph.D.

Head and Neck Cancer
Ezra Cohen, M.D.

General Networking
Jill O’Donnell-Tormey, Ph.D.

Skyline A, Floor 21

Skyline B, Floor 21

Skyline C, Floor 21

Ballroom (here)
Our Sponsors

This event is made possible with generous support from:

- Bristol-Myers Squibb
- MERCK
- gsk
- AstraZeneca
- Genentech
- Novartis
- Regeneron
Our Promotional Partners

A special thank you to those who helped promote the summit

- Addario Lung Cancer Foundation
- Bay Area Cancer Connections
- Coalition for Clinical Trial Awareness
- Colon Cancer Alliance
- Cancer Support Community
- Fight Colorectal Cancer
- Focused Ultrasound Foundation
- FORCE

- GI Cancers Alliance
- Head and Neck Cancer Alliance
- Imerman Angels
- Immunotherapy Foundation
- Let Life Happen
- Parker Institute for Cancer Immunotherapy
- Patient Empowerment Network
- UCSF Helen Diller Family Comprehensive Cancer Center
CANCER RESEARCH INSTITUTE
IMMUNOTHERAPY PATIENT SUMMIT

San Francisco • Chicago • New York • Houston • Tampa

San Francisco July 8, 2017