FROM CRI’S LEADERSHIP

This past year was one of many breakthroughs for the Cancer Research Institute (CRI). Science magazine named cancer immunotherapy the “Breakthrough of the Year,” catapulting the work that CRI does into the spotlight. It was also the year that several immunotherapies pioneered by CRI scientists received “Breakthrough Therapy” status from the FDA, paving the way for important new drug approvals. In September of 2014, U.S. regulators approved Merck’s drug Keytruda® (pembrolizumab) for the treatment of melanoma, making it the first PD-1 checkpoint inhibitor to receive FDA approval and the third immunotherapy to be approved in just the past four years.

Institutionally, CRI had a breakthrough year, as well. We devoted $22 million to our programs—more than we ever have at one time before. We launched a new patient website, TheAnswerToCancer.org, designed to educate patients and caregivers about cancer immunotherapy. We celebrated our second annual Cancer Immunotherapy Month, mobilizing individuals and companies across the world to participate in our education and awareness activities. And our Clinical Accelerator program is spearheading several important clinical trials that are bringing lifesaving immunotherapies to patients faster.

None of this would be possible without the generous support of our donors, who sustain our work and make tangible our vision of a world free from the fear of cancer. On behalf of our staff, our scientists, and our patients, thank you for all that you do to help CRI pursue its mission to conquer cancer within our lifetimes.

FROM CRI’S LEADERSHIP

James P. Allison, Ph.D.
Director, Scientific Advisory Council

Jill O'Donnell-Tormey, Ph.D.
CEO and Director of Scientific Affairs

John B. Fitzgibbons
Co-Chairman of the Board

Paul C. Shiverick
Co-Chairman of the Board

OUR MISSION: SAVE MORE LIVES WITH CANCER IMMUNOTHERAPY

Established in 1953, the Cancer Research Institute (CRI) is the world’s only nonprofit organization dedicated exclusively to saving cancer patients’ lives by fueling the development of smarter, more effective treatments that mobilize our immune defenses against all forms of cancer. CRI supports the most innovative research of young scientists, invests in clinical studies of encouraging new treatments, and unites the efforts of the field’s leaders worldwide. With this work, CRI is turning our own immune system into a powerful weapon against cancer.

Kunle Odunsi, M.D., Ph.D., at Roswell Park Cancer Institute
Member, CRI Scientific Advisory Council

Kunle Odunsi, M.D., Ph.D., at Roswell Park Cancer Institute
Member, CRI Scientific Advisory Council
For this year’s annual report, we chose the theme “Breaking Through,” in recognition of the tremendous progress being made in the field of cancer immunotherapy. We at the Cancer Research Institute (CRI) know that the current state of optimism about immune-based treatments for cancer would not have been possible without the decades of research that came before. We also know that future advances will depend upon continued financial support of the entire research spectrum, from basic science, to translational research, to clinical trials. With its more than 60 years of funding research to understand the immune system and how it can be harnessed to conquer cancer, CRI is leading the way and ushering in a new era when patients, with all types of cancer, can be treated and one day cured with immunotherapy.

“Cancer immunotherapy offers the greatest hope of transforming cancer treatment in our lifetimes.”

Jill O’Donnell-Tormey, Ph.D., CEO and Director of Scientific Affairs

Dendritic cells (green) use their spiny tendrils to present antigens to T cells (red). Photo courtesy of Olivier Schwartz, Ph.D., Pasteur Institute
The CRI-IRVINGTON POSTDOCTORAL FELLOWSHIP PROGRAM, established in 1971, is CRI’s longest-running continuous program. Fellowships provide up to $164,500 over three years to support young immunologists and cancer immunologists studying at top universities around the world.

POSTDOCTORAL

Immune Evasion

As cancer begins to develop, our immune system tries to eliminate it. However, immune cells are often unable to prevent cancer development because their activity is inhibited in several ways, including by checkpoints that “put the brakes” on the immune response, and by regulatory cells that tell the immune system to “stand down.” Cancer cells then escape detection and destruction by the immune system and grow into tumors. CRI postdoctoral fellows are exploring how immune evasion occurs and how it can be overcome, with the hope of improving the effectiveness of immunotherapies.

CRI postdocs pursue tomorrow’s breakthroughs today

In medicine, the most important breakthroughs usually come from research aimed at understanding fundamental biological mechanisms. CRI is currently supporting the basic laboratory research of 90 postdoctoral fellows, with the understanding that tomorrow’s cures will be built on the solid foundation of today’s basic discoveries.

Immune Evasion

Optimizing Therapeutics

Numerous CRI postdoctoral fellows are conducting research into improving the effectiveness of existing immunotherapies and understanding the mechanisms by which they work. From uncovering new cancer antigens that can be used in therapeutic vaccines, to developing new targets for genetically engineered T cells, to understanding how checkpoint inhibitor antibodies work to stimulate the immune response, CRI postdoctoral fellows are bringing basic research to bear on topics of great clinical importance.

Inflammation, Microbes, and Cancer

Chronic inflammation is believed to promote the development of several types of cancer, including colorectal, liver, bladder, and lung cancers. CRI postdoctoral fellows are pursuing research aimed at understanding the link between inflammation and cancer progression, including the role that bacteria and viruses may play in this process. By finding ways to combat chronic inflammation, scientists may one day be able to control the development of inflammation-induced cancer, or prevent it altogether.

CANCER RESEARCH INSTITUTE has been very wise in putting the majority of its money into people who will develop new ideas.

James Watson, Ph.D., co-discoverer of the structure of DNA and CRI grantee

26 new grants
$4.3 million awarded

The Cancer Research Institute

has been very wise in putting the majority of its money into people who will develop new ideas.

James Watson, Ph.D., co-discoverer of the structure of DNA and CRI grantee

Optimizing Therapeutics

Numerous CRI postdoctoral fellows are conducting research into improving the effectiveness of existing immunotherapies and understanding the mechanisms by which they work. From uncovering new cancer antigens that can be used in therapeutic vaccines, to developing new targets for genetically engineered T cells, to understanding how checkpoint inhibitor antibodies work to stimulate the immune response, CRI postdoctoral fellows are bringing basic research to bear on topics of great clinical importance.

Inflammation, Microbes, and Cancer

Chronic inflammation is believed to promote the development of several types of cancer, including colorectal, liver, bladder, and lung cancers. CRI postdoctoral fellows are pursuing research aimed at understanding the link between inflammation and cancer progression, including the role that bacteria and viruses may play in this process. By finding ways to combat chronic inflammation, scientists may one day be able to control the development of inflammation-induced cancer, or prevent it altogether.

Inflammation, Microbes, and Cancer

Chronic inflammation is believed to promote the development of several types of cancer, including colorectal, liver, bladder, and lung cancers. CRI postdoctoral fellows are pursuing research aimed at understanding the link between inflammation and cancer progression, including the role that bacteria and viruses may play in this process. By finding ways to combat chronic inflammation, scientists may one day be able to control the development of inflammation-induced cancer, or prevent it altogether.

Watch the Video

Gut Responses: Inflammation, Microbes, and Cancer

www.bit.ly/gut-responses
The CLINIC AND LABORATORY INTEGRATION PROGRAM (CLIP) supports scientists who are exploring clinically relevant questions aimed at improving the effectiveness of cancer immunotherapies. CLIP grants provide up to $200,000 over two years.

I definitely believe that the work I'm doing is going to benefit cancer patients.

Ryan M. Teague, Ph.D., CLIP Investigator

BETWEEN BENCH & BEDSIDE

Pulling the Rug Out from Under Tumors

Ellen Puré, Ph.D.
Genentech Investigator
University of Pennsylvania
School of Veterinary Medicine
Philadelphia, PA

Most conventional cancer therapies directly target cancer cells. In recent years, researchers have learned that the cells surrounding a tumor are just as important. Ellen Puré, Ph.D., is using genetically engineered immune cells to kill the cancer-supporting "stromal" cells surrounding tumors. Called chimeric antigen receptor (CAR) T cells, these engineered cells contain a protein receptor that turns T cells into cancer fighters. Dr. Puré has shown that these CAR T cells can inhibit the growth of lung tumors in mice. They are now exploring whether this immunotherapy can enhance the effectiveness of conventional therapies like chemotherapy and radiation.

Beta-Blocker Therapy for Breast Cancer

Ming Li, Ph.D.
Memorial Sloan Kettering Cancer Center
New York, NY

Suppression of the immune system by cancer cells is believed to play an important role in cancer progression. Ming Li, Ph.D., is studying the immunosuppressive pathway that is activated in tumor-associated immune cells in breast cancer models. This pathway is also the target of beta blockers, which are used to treat high blood pressure and which have been associated with increased survival among breast cancer patients. Dr. Li is investigating whether beta blockers target T cells to control breast tumor development, and is also working to understand how this pathway regulates T cell responses to tumors, which may reveal novel targets for the immunotherapy of breast cancer.

When Cancer Starves the Immune System

Jeffrey Rathmell, Ph.D.
Wade F.B. Thompson Investigator
Duke University Medical Center
Durham, NC

Researchers have known for a long time that cancer cells compete with normal cells for energy and nutrients. Jeffrey Rathmell, Ph.D., is working to understand how this competition suppresses the immune system’s ability to fight cancer. In a model of kidney cancer, he has found that cancer cells starve immune cells of important nutrients such as glucose and amino acids, leaving them unable to marshal an effective immune response and altering their function. His work also suggests that therapies designed to block immune checkpoints, such as anti-PD-1 antibodies, may act in part by shifting this metabolic competition back in favor of immune cells.
The CLINICAL ACCELERATOR is a venture philanthropy program designed to speed the development of cancer immunotherapies by facilitating research collaboration between biopharma companies and academic cancer researchers. The program aims to identify and kick-start the development of new combination treatments using the most promising drugs.

Scientists increasingly recognize that the cancer treatments of tomorrow will be made up of combinations of different drugs that work in complementary fashion. At the same time, it has become clear that existing models of drug development are not well suited to testing these combinations in a smart and coordinated fashion. Through its novel Clinical Accelerator program, CRI is enabling the strategic partnerships and drug combinations needed to generate the next cancer breakthroughs.

Key to the success of the program is an innovative, collaborative model: CRI partners with leading biopharma companies to gain access to their drugs; CRI then provides nonprofit investment capital to help fund clinical trials of drug combinations that scientists in our clinical network think are most promising, while our partner, Ludwig Cancer Research, provides clinical trial management support. Industry benefits by getting more shots on goal, CRI scientists benefit by gaining research knowledge to inform future trials, and patients benefit by getting access to better immunotherapies sooner.

To date, CRI has announced collaborations with seven biopharma companies, including MedImmune/AstraZeneca, Immune Design, CureVac, and VentiRx. CRI investigators now have access to a “menu” of roughly 30 drugs from more than 15 companies, including formal and informal partnerships. The Clinical Accelerator is currently supporting over 20 clinical trials, including four that have already opened, six that are in planning stages, and another 12 for which it has supplied drugs. All of these studies test novel combinations of immunotherapies for patients with a variety of different cancers, including melanoma, cervical, colorectal, head and neck, kidney, and lung cancers.

Immunotherapies being studied include several checkpoint inhibitors (anti-PD-L1, anti-CTLA-4) and immune modulators (anti-GITR, TLR3 agonist), as well as vaccines targeting cancer-specific antigens. Just this past year, CRI committed funding to two new clinical trials—one for patients with advanced brain cancer, and another for patients with advanced ovarian cancer. These groundbreaking clinical trials are critical to designing better immunotherapies for patients, and Clinical Accelerator is making them happen faster.

The Clinical Accelerator provides significant and immediate benefits to patients, researchers, and industry. It’s a win-win-win situation.

Adam Kolom, Managing Director
For more than 20 years, CRI has been convening scientists to discuss immunotherapy

Getting scientists together in one place to meet and discuss new ideas has always been a valuable part of the scientific enterprise—one no less important today in our world of hyper-communication.

Established in 1993, CRI’s annual scientific symposium focuses on progress in cancer immunology and immunotherapy. The theme of this past year’s meeting was “Dynamics of Host-Tumor Interaction,” and brought more than 325 scientists from around the world to New York City for three days last October.

Among the many topics explored were the role of chronic inflammation in promoting cancer, the function of the tumor stroma in promoting immune evasion, and the role of bacteria in shaping responses to cancer treatment.

The symposium began with the inaugural William B. Coley lecture, delivered by Michael Karin, Ph.D., winner of the 2013 William B. Coley Award. In his lecture, Dr. Karin discussed the role of inflammation and how it can both promote and combat cancer. The meeting also included a poster session with presentations by 110 graduate students, postdoctoral fellows, and other investigators, five of whom were invited to deliver a lecture during the general session.

Since 2002, the Cancer Immunotherapy Consortium (CIC) has been working to make immunotherapy the standard-of-care in oncology. In 2013, the CIC was reconceived as a “think tank” devoted to tackling the most urgent matters in bringing new immune-based treatment to the clinic and through regulatory approval. Each year, one topic will be addressed and a white paper produced. The topic chosen for 2014 was the development of surrogate endpoints for cancer immunotherapy.

[The CRI symposium is] the milestone around which we in the field of tumor immunology and immunotherapy now mark our progress.

Steven A. Rosenberg, M.D., Ph.D., National Cancer Institute
THEANSWERTOCANCER.ORG
NEW WEBSITE

The first-of-its-kind cancer immunotherapy resource for patients and caregivers

As major advances in cancer immunotherapy begin to alter the landscape of cancer treatment, patients facing a cancer diagnosis need to be aware of immunotherapy as a potential treatment option. On June 1, 2014, CRI launched a new website designed specifically for cancer patients and caregivers interested in learning about cancer immunotherapy.

TheAnswerToCancer.org seeks to engage, educate, and empower patients and their loved ones to learn more about cancer immunotherapy as a treatment option across numerous tumor types. The website provides an accessible overview of the science behind cancer immunotherapy, detailed information about cancer immunotherapy clinical trials, and voices from the cancer immunotherapy community.

TheAnswerToCancer.org is supported through a charitable donation from Bristol-Myers Squibb.

Visit www.theanswertocancer.org to learn more.

Joe B., Prostate Cancer Survivor

When I was dealing with prostate cancer and realized there were treatments designed to help boost the immune system so that it could detect the disease, I was taken by that whole concept.
Cancer Research Institute celebrates second annual Cancer Immunotherapy Month™

This past June, CRI celebrated its second annual Cancer Immunotherapy Month™ to raise awareness of immunotherapy and its potential to transform cancer treatment in our lifetimes. It exceeded expectations, raising more than $230,000 for cancer research.

Some highlights of the month-long campaign include:

• “30 Days, 30 Stories” of patients sharing their experiences with lifesaving immunotherapy.
• More than half a million people turned to social media on June 6 for #WhiteOutCancer Day.
• A Twitter Chat co-sponsored by CRI, TIME magazine, Mayo Clinic, and the American Association for Cancer Research (AACR) reached 16.5 million people.
• A series of free weekly educational webinars helped people learn about melanoma, lung cancer, prostate cancer, bladder cancer, kidney cancer, and ovarian cancer and about how groundbreaking research in immunotherapy is transforming their treatment. Past webinars can be viewed at www.bit.ly/CRIwebinars.
• Sponsors and supporters for the month included members of the biotech and biopharmaceutical industry, 1-800-flowers.com, AACR, Stand Up To Cancer, and many others. See a complete list of sponsors and supporters at www.bit.ly/2014CIMsupporters.
It is my firm belief...that the end of cancer is actually closer at hand than anyone outside of this room even realizes.

Sean Parker, Serial Tech Entrepreneur and Philanthropist

RECOGNIZING EXCELLENCE

Each year, CRI honors those individuals who have made important contributions to the field of cancer immunotherapy

WILLIAM B. COLEY AWARD FOR DISTINGUISHED RESEARCH IN BASIC AND TUMOR IMMUNOLOGY
Michael B. Karin, Ph.D.
Professor of Pharmacology and Pathology
University of California, San Diego

FREDERICK W. ALT AWARD FOR NEW DISCOVERIES IN IMMUNOLOGY
Jill O’Donnell-Tormey, Ph.D.
CEO and Director of Scientific Affairs
Cancer Research Institute

AACR-CRI LLOYD J. OLD AWARD IN CANCER IMMUNOLOGY
Robert D. Schreiber, Ph.D.
Alumni Endowed Professor of Pathology and Immunology
Washington University School of Medicine

OLIVER R. GRACE AWARD FOR DISTINGUISHED SERVICE IN ADVANCING CANCER RESEARCH
Bahija Jallal, Ph.D.
Executive Vice President, AstraZeneca
Head, MedImmune
Sean Parker
Serial Tech Entrepreneur and Philanthropist

Watch the award videos at www.bit.ly/2014CRIawards
In fiscal year 2014 (July 1, 2013, to June 30, 2014), CRI awarded more than $19 million for cancer immunology research and cancer immunotherapy clinical development.

*Denotes grants newly awarded in fiscal year 2014. All others are active grants awarded in previous years.

Data from CRI's 2014 Annual Report

CRI-Scientific Advisory Council member Lisa M. Coussens, Ph.D., with postdoctoral fellow at Oregon Health & Science University.

<table>
<thead>
<tr>
<th>Program</th>
<th>Award Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Training and Research in Tumor Immunology (STaRT) Program</td>
<td>Two-year awards that attract bright young minds to rewarding careers as cancer immunologists by funding graduate studies in tumor immunology at top universities.</td>
</tr>
<tr>
<td>Thomas Chia Ting Fung</td>
<td>Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA. Role of innate lymphoid cell-controlled intestinal barrier function in hepatocellular carcinoma.</td>
</tr>
<tr>
<td>Alessandra Hoeyh</td>
<td>Massachusetts General Hospital, Boston, MA. The role of PTEN in regulatory T cell stability and immune surveillance.</td>
</tr>
<tr>
<td>Jenny Kao</td>
<td>Memorial Sloan-Kettering Cancer Center, New York, NY. Elucidating the regulatory role of CTCL-4 on natural killer cell responses.</td>
</tr>
<tr>
<td>Albert Lo</td>
<td>Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA. Regulation of inflammatory and immune response to pancreatic cancer by Ralp's intracellular activity.</td>
</tr>
<tr>
<td>Thornei William Thompson</td>
<td>University of California, Berkeley, Berkeley, CA. The role of oncogene-induced senescence in promoting anti-tumor immune responses.</td>
</tr>
</tbody>
</table>

Predoctoral Emphasis Pathways in Tumor Immunology

Four-year awards to universities to support establishment and maintenance of tumor immunology training courses for graduate students.

- **Harvard Medical School, Boston, MA**
 - Directors: Glenn Dranoff, M.D., and Michael Carroll, Ph.D.
- **Johns Hopkins University School of Medicine, Baltimore, MD**
 - Director: Charles G. Drake, M.D., Ph.D.
- **QIMR Berghofer Medical Research Institute, Queensland, Australia**
 - Director: Mark J. Smyth, Ph.D.
- **University of Colorado, Denver, CO**
 - Co-Directors: John Kaplinsky, Ph.D., and Philippa Marrack, Ph.D.
- **Washington University School of Medicine, St. Louis, MO**
 - Director: Robert D. Schreiber, Ph.D.
- **Weill Cornell Medical College, New York, NY**
 - Directors: Alexander Y. Rudensky, Ph.D., and Carl F. Nathan, M.D.

Immunology/Tumor Immunology Training Course

Lomonosov Moscow State University, Moscow, Russia

- Course Coordinator: Sergei A. Nedospasov, Ph.D., D.Sc.*

Antibody Structure and Diversity

CRI-Irvington Postdoctoral Fellowship Program

Three-year awards that further the career development and advanced laboratory research of promising postdoctoral fellows working under the mentorship of world-class immunologists and tumor immunologists.

Antibody Structure and Diversity

- **Jiazi Hu, Ph.D.**
 - Boston Children's Hospital, Boston, MA. Mechanisms that target AID for antibody gene diversification and for oncogenic chromosomal translocations.
- **Robertson Foundation Fellow**
 - Feilong Meng, Ph.D.
 - Boston Children's Hospital, Boston, MA. Role of co-factors in targeting activation-induced cytidine deaminase activity during class switch recombination and somatic hypermutation.
- **Qian, Ph.D.**
 - Boston Children's Hospital, Boston, MA. Mechanistic elucidation of activation-induced cytidine deaminase (AID) in immunity and cancer.
- **California Institute of Technology, Pasadena, CA**
 - The structural and molecular basis of polymeric IgA function in mucosal immunity and associated cancers.
- **Long Siew Yao, Ph.D.**
 - Boston Children's Hospital, Boston, MA. Mechanisms by which DNA sequence influence AID targeting in antibody diversity and B lymphocyte cancer. **Tangsheng Yi, Ph.D.**
 - University of California, San Francisco, San Francisco, CA. Role of EBI2 and its oxysterol ligands in adaptive immunity.
Gene Expression and Development
Bradley Wayne Blaser, M.D., Ph.D.*
Boston Children’s Hospital,
Boston, MA

Immunologic regulation of hematopoietic stem cell engraftment
Bradley Wayne Blaser, M.D., Ph.D.*
Boston Children’s Hospital,
Boston, MA

Proliferation of long non-coding RNAs in the development of T cell leukemia
Bradley Wayne Blaser, M.D., Ph.D.*
Boston Children’s Hospital,
Boston, MA

Pharmacologicization of Young Philanthropist Fellows
Bradley Wayne Blaser, M.D., Ph.D.*
Boston Children’s Hospital,
Boston, MA

Cancer Immunology
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Nuclear DBD-T cells differ in their ability to respond to tumor-associated antigen
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Immunologic Characterization of the MHC/IL12R signaling axis as an immunotherapeutic target in cancer
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Characterization of the MHC/IL12R signaling axis as an immunotherapeutic target in cancer
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Nuclear DBD-T cells differ in their ability to respond to tumor-associated antigen
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Secondary T cell responses to cancer
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Regulation of cytokine-killing cells by the immune system in cancer
Yian Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Mechanisms that underpin the acquisition of the tumor suppressor vigil at the nuclear lamina
Yian Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Immunological Characterization of the MHC/IL12R signaling axis as an immunotherapeutic target in cancer
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

A model system to investigate antibody bispecific bridging mediated by gI, gII, Herpes virus Fc receptor
Lisa C. Giordano, Ph.D.
Memorial Sloan Kettering Cancer Center,
New York, NY

Regulation of colitis-associated cancer
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Tumor-specific immune responses to cancer
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
La Jolla, CA

Identification of key immune checkpoints that control tumor-induced inflammation
Yina Zhu, Ph.D.
University of California, San Diego,
Optimizing Therapies
Margaret Callahan, M.D., Ph.D.
Memorial Sloan Kettering Cancer Center, New York, NY
Immunologic effects of BRAF inhibitors. Towards the rational development of multi-modality therapy for advanced melanoma.

Lloyd J. Old Memorial Fellow

Carmen Garlach, Ph.D., Ph.D.*
Harvard Medical School, Boston, MA
Differentiation, function, and dynamic behavior of transitional memory cells (T(h) - a novel subset of CD8+ memory T cells.

Matthew M. Galin, Ph.D.*
Washington University School of Medicine, St. Louis, MO
 Understanding antigen-specific targets of checkpoint blockade cancer treatment and to identify optimal target antigens for vaccination.

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,
cellular immunotherapy

Minneapolis, MN
University of Minnesota,
David L. Lampi Hermanson, Ph.D.*
regulation of IgG sialylation

Enhanced anti-tumor immunity by vaccination for checkpoint blockade cancer treatment

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,

Matthew M. Galin, Ph.D.*
Washington University School of Medicine, St. Louis, MO
Understanding antigen-specific targets of checkpoint blockade cancer treatment and to identify optimal target antigens for vaccination.

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,

Matthew M. Galin, Ph.D.*
Washington University School of Medicine, St. Louis, MO
Understanding antigen-specific targets of checkpoint blockade cancer treatment and to identify optimal target antigens for vaccination.

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,

Matthew M. Galin, Ph.D.*
Washington University School of Medicine, St. Louis, MO
Understanding antigen-specific targets of checkpoint blockade cancer treatment and to identify optimal target antigens for vaccination.

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,

Matthew M. Galin, Ph.D.*
Washington University School of Medicine, St. Louis, MO
Understanding antigen-specific targets of checkpoint blockade cancer treatment and to identify optimal target antigens for vaccination.

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,

Matthew M. Galin, Ph.D.*
Washington University School of Medicine, St. Louis, MO
Understanding antigen-specific targets of checkpoint blockade cancer treatment and to identify optimal target antigens for vaccination.

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,

Matthew M. Galin, Ph.D.*
Washington University School of Medicine, St. Louis, MO
Understanding antigen-specific targets of checkpoint blockade cancer treatment and to identify optimal target antigens for vaccination.

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,

Matthew M. Galin, Ph.D.*
Washington University School of Medicine, St. Louis, MO
Understanding antigen-specific targets of checkpoint blockade cancer treatment and to identify optimal target antigens for vaccination.

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,

Matthew M. Galin, Ph.D.*
Washington University School of Medicine, St. Louis, MO
Understanding antigen-specific targets of checkpoint blockade cancer treatment and to identify optimal target antigens for vaccination.

Jin-Hwan Han, Ph.D.
San Francisco, CA
University of California, San Francisco,
Trials Supported with Reagents

A multi-peptide vaccine plus Toll-like receptor agonists in melanoma patients, with evaluation of injection site microenvironment for resistant stage III IV 8
Craig L. Slingluff Jr., M.D., University of Virginia Cancer Center, Charlottesville, VA

A phase I study of vaccination with NY-ESO-1 protein mixed with Poly-ICLC, OK-432 (Picibanil®), and ISA 91 (Mondaril®) in patients with advanced cancers expressing NY-ESO-1 antigen
Yoshino Doi, Ph.D., and Hiashi Wada, M.D., Ph.D., Osaka University, Osaka, Japan

A phase II study of vaccination with NY-ESO-1 protein, Poly-ICLC, and reguMouse in patients with adult T cell leukemia/lymphoma expressing NY-ESO-1
Yusuo Kanatara, Ph.D., and Hironori Nishikawa, M.D., Ph.D., Osaka University, Osaka, Japan

A pilot study of a novel multidisciplinary immuno-chemotherapy platform for patients with advanced ovarian T cell lymphoma
Catherine M. Osherbach, M.D., NYU Langone Medical Center, New York, NY

A phase I study of the immunogenicity of a B peptide breast cancer vaccine plus Poly-ICLC in stage III-IV breast cancer
Patrick M. Dillon, M.D., University of Virginia Cancer Center, Charlottesville, VA

A pilot study of NY-ESO-1 clinical trials in patients with epithelial ovarian, fallopian tube, or primary peritoneal carcinoma and monitoring of tumor-specific immune responses
Maha Ayyoub, Ph.D., and Daniella Valmer, Ph.D., Centro de Luta Contra o Cancer Namees: Atlantic-France, Nantes, France

Reagent Manufacture
Production of NY-ESO-1 overlapping peptides for use in a variety of trials
PolyPeptide Laboratories San Diego, San Diego, CA

A phase I study of cancer vaccine:CIBNY-ESO-1 in combination with Poly-ICLC in patients with esophageal cancer or malignant melanoma expressing NY-ESO-1
Hiroshi Suki, M.D., and Shinichi Kagaya, M.D., Mie University School of Medicine, Mie, Japan

A phase I study of immunogenicity of a multi-phosphopeptide vaccine plus Poly-ICLC in participants with melanoma
Victor R. Engelhard, Ph.D., and Craig L. Slingluff Jr., M.D., University of Virginia Cancer Center, Charlottesville, VA

A phase I study of NY-ESO-1 protein + Poly-ICLC vs. MTD/91® (ISA 91) VII vaccine in patients with advanced malignant melanoma
Nina Bhattachary, M.D., Ph.D., Icahn School of Medicine at Mount Sinai, New York, NY

Phase II trial of a long peptide vaccine (UBP4 + TR) agonists for resistant stage III-IV melanoma
Craig L. Slingluff Jr., M.D., University of Texas MD Anderson Cancer Center, Houston, TX, and Antonio Ribas, M.D., Ph.D., (UCLA) Medical Center, Los Angeles, CA

Safety and immunogenicity of vaccination with NY-ESO-1 plus Poly-ICLC in patients with stage II/IV pulmonary sarcoidosis
Christian Taube, M.D., and Maarten L. Zandstra, Ph.D., Leiden University Medical Center, Leiden, The Netherlands

Correlative and Laboratory Studies
Development of cancer immunotherapy targeting regulatory T cells
Hiroshy Nishikawa, M.D., Ph.D., Osaka University, Osaka, Japan

Early phase NY-ESO-1 clinical trials in patients with epithelial ovarian, fallopian tube, or primary peritoneal carcinoma and monitoring of tumor-specific immune responses
Maha Ayyoub, Ph.D., and Daniela Valmer, Ph.D., Centro de Luta Contra o Cancer Namees: Atlantic-France, Nantes, France

Immunologic monitoring of the DVC trials
Sadia Gjuraj, Ph.D., Icahn School of Medicine at Mount Sinai, New York, NY

Phase I study of NY-ESO-1 protein + Poly-ICLC vs. MTD/91® (ISA 91) VII vaccine in patients with advanced malignant melanoma
Nina Bhattachary, M.D., Ph.D., Icahn School of Medicine at Mount Sinai, New York, NY

Phase II trial of CTLA-4 Blockade: and low dose cyclophosphamide in patients with advanced malignant melanoma after failure of at least one prior therapy
Nina Bhattachary, M.D., Ph.D., Icahn School of Medicine at Mount Sinai, New York, NY

Anna C. Pavlick, D.O., NYU Langone School of Medicine, New York, NY

Proctological toxicity studies to enable the clinical development of the NY-ESO-1 peptide vaccine
Saulino J.M. Matos, M.D., Ph.D., Leiden University Medical Center, Leiden, The Netherlands

Vaccination of melanoma patients (stage II-IV) with Inifimucab MPM21, tumor antigenic peptides, and Montanide
Daniel E. Spiszer, M.D., USA Hospital of Lausanne, Lausanne, Switzerland

Leveraged Grants
Special partnership to explore novel preclinical and clinical studies in high-priority research areas.
Cancer Immunology Translation Research Dream Team
James F. Allison, Ph.D., The University of Texas MD Anderson Cancer Center, Houston, TX, and Antonio Ribas, M.D., Ph.D., (UCLA) Medical Center, Los Angeles, CA

Immunologic checkpoint blockade and adoptive T cell transfer in cancer therapy
In partnership with the Entertain Industry Foundation Stand Up To Cancer
Carl H. June, M.D., and Gregory L. Beatty, M.D., Ph.D.

Vaccine and Immunotherapy Targeting Regulatory T cells
Daniel E. Spiszer, M.D., USA Hospital of Lausanne, Lausanne, Switzerland

Safety and immunogenicity of a multi-peptide vaccine plus Poly-ICLC in stage II/IV breast cancer
Patricia J. Slingluff, M.D., M.D., University of Virginia Cancer Center, Charlottesville, VA

Phase I/II study of a long peptide vaccine (UBP4 + TR) agonists for resistant stage III-IV melanoma
Craig L. Slingluff Jr., M.D., University of Texas MD Anderson Cancer Center, Houston, TX, and Antonio Ribas, M.D., Ph.D., (UCLA) Medical Center, Los Angeles, CA

Clinical and Laboratory Studies
Development of cancer immunotherapy targeting regulatory T cells
Hiroshy Nishikawa, M.D., Ph.D., Osaka University, Osaka, Japan

Early phase NY-ESO-1 clinical trials in patients with epithelial ovarian, fallopian tube, or primary peritoneal carcinoma and monitoring of tumor-specific immune responses
Maha Ayyoub, Ph.D., and Daniela Valmer, Ph.D., Centro de Luta Contra o Cancer Namees: Atlantic-France, Nantes, France

Immunologic monitoring of the DVC trials
Sadia Gjuraj, Ph.D., Icahn School of Medicine at Mount Sinai, New York, NY

Phase I study of NY-ESO-1 protein + Poly-ICLC vs. MTD/91® (ISA 91) VII vaccine in patients with advanced malignant melanoma
Nina Bhattachary, M.D., Ph.D., Icahn School of Medicine at Mount Sinai, New York, NY

Phase II study of CTLA-4 blockade and low dose cyclophosphamide in patients with advanced malignant melanoma after failure of at least one prior therapy
Nina Bhattachary, M.D., Ph.D., Icahn School of Medicine at Mount Sinai, New York, NY

Anna C. Pavlick, D.O., NYU Langone School of Medicine, New York, NY

Proctological toxicity studies to enable the clinical development of the NY-ESO-1 peptide vaccine
Saulino J.M. Matos, M.D., Ph.D., Leiden University Medical Center, Leiden, The Netherlands

Vaccination of melanoma patients (stage II-IV) with Inifimucab MPM21, tumor antigenic peptides, and Montanide
Daniel E. Spiszer, M.D., USA Hospital of Lausanne, Lausanne, Switzerland

Designated Grants
Grants to support research projects and public education and awareness initiatives for which, in most cases, donors have specifically raised funds
Georgina Klein, M.D., D.Sc.*
Karolinska Institute, Stockholm, Sweden
Studies on Epstein-Barr virus, oncogenes and tumor suppressor genes, tumor immunology, and inhibition of tumor cell growth by stroma cells
In partnership with the Concern Foundation
Malcolm A. Moore, Ph.D.*
Memorial Sloan Kettering Cancer Center, New York, NY

The study of hematopoietic stem cells and progenitor populations in normal and cancer cells
Garvich Neiman Lab
ZPRD: The End of Prostate Cancer, Washington, DC*
Support for the Drive Against Prostate Cancer mobile screening vehicle

Annual Awards
In addition to providing financial support to researchers and investigators, CRI also honors scientists and community leaders with achievement awards
William B. Coley Award for Distinguished Service in Advancing Cancer Research
Annual prize that recognizes the contributions of dedicated laypersons whose leadership has had a significant impact on cancer research.
Bahija Jallal, Ph.D.*
Academic/Industrial/Moritume
Sean Parker*
Serial Tech Entrepreneur and Philanthropist

William B. Coley Award for Distinguished Service in Advancing Cancer Research
Annual award that recognizes the outstanding and innovative scientists whose discoveries in immunology contribute to the advancement of immunosystem-based therapies for cancer.
Michael R. Kastan, Ph.D., M.S.*
University of California, San Diego

Lloyd J. Old Award in Cancer Immunology
Award recognizes an active scientist whose outstanding and innovative research in cancer immunology has had a far-reaching impact on the cancer field.
Robert D. Schreiber, Ph.D.*
Washington University School of Medicine
In partnership with the American Association for Cancer Research

Frederick W. Alt Award for New Discoveries in Immunology
Price honoring a former postdoctoral fellow in recognition of outstanding success in academia or industry for research that may have a potentially major impact on immunology.
Jill O’Doherty-Ternay, Ph.D.*
Cancer Research Institute

Olive R. Grace Award for Distinguished Service in Advancing Cancer Research
Prize awarded to recognize the contributions of dedicated laypersons whose leadership has had a significant impact on cancer research.
Bahija Jallal, Ph.D.*
Academic/Industrial/Moritume
Sean Parker*
Serial Tech Entrepreneur and Philanthropist

Olive R. Grace Award for Distinguished Service in Advancing Cancer Research
None of the lifesaving research that CRI supports would be possible without the generous financial contributions of our donors—individuals, foundations, and corporations. CRI honors those donors by being responsible and strategic about its resources, giving our supporters confidence that we will use their money wisely to achieve the greatest impact possible.

From the thousands of individuals who make one-time donations, to the many families who give yearly in memory of a loved one, to our trustees who give generously of both their time and money, no gift to CRI goes unappreciated. These contributions continue to make a difference in the life of the organization.

Among the many notable fundraising events of this past year were the 27th Annual Awards Dinner, which raised a record-breaking $1.5 million, and the 2014 Through the Kitchen benefit, which raised $1.2 million for CRI’s postdoctoral fellowship program. Together, unrestricted donor contributions to CRI totaled $24.5 million in the last year.

When I went through all the charities, I felt that CRI was doing what I wanted done, where the majority of the money was spent on research.

Penny Bolton, Bras for a Cause
The Cancer Research Institute’s ability to advance important science and facilitate the development of immunotherapies is made possible through the generous support of our donors. Acknowledgements listed here reflect contributions made to CRI between July 1, 2013, and June 30, 2014.

$1,000,000 +
Bristol Myers Squibb
Georgia and Don Bogle
Anne Maria and Stephen Kallan Foundation
Morgan, Lewis & Bockius
Ms. Sean N. Parker Foundation
Robson Foundation
VanVliet Pharmaceuticals, Inc.

$500K – $999K
Cane Brain Cancer Foundation
Mr. and Mrs. John Dickinson
John and Joan Dickinson Family Foundation
Mr. and Mrs. Sean F. Pathei
Shades Hill Foundation
Betsy and Paul Shivick

$100K – $499K
Concem Foundation
Estate of Salvatore Curigliano
Ms. and Mr. Maurice J. Cunetta
Lestie and Bob Dahl
Th. Robert I. Fendrich Family Trust
Genentech
Mr. and Mrs. Oliver R. Grace Jr.
F.M. Kirby Foundation, Inc.

$10K – $49K
Argus
Aiken & Company, Inc.
California Fund of the Hugh J. Anderson Foundation
Dr. Eva Andersson-Dubin and
Mr. Glenn Dubin
Connie Frank Foundation
Mr. and Mrs. Jacob Vos

$1,000 – $4,999
Wilson Family Foundation
The Laurence Cecil and Fay Strout Foundation
Mr. and Mrs. Ernest B. Smith
Spredfast

$50K – $99K
Mr. and Mrs. Edgar R. Berner
Concern Foundation
Mr. and Mrs. Andrew M. Paul
Orinoco Foundation
Mr. and Mrs. Jeffrey B. Sklar

$1,000 – $2,999
$500 – $999
Korea and Christiine Figg Hopkins Foundation
Mr. and Mrs. Victor F. Daro
Oliver R. Grace Charitable Foundation
Marion Eisen Kaufmann Foundation
Ms. and Mrs. Alexander P. Lynch
The Andrea Foundation
Mr. and Mrs. William G. Kane
Grace Humphrey Testamentary Trust
Mr. and Mrs. Alfred Taubman
Mr. and Mrs. John Chadwick

$25K – $49K
Avansor
Astellas Pharma USA, Inc.
Ibis M. Rudolphii Roxbury Charitable Trust
Estate of Ella R. Banks
The Joanne E. and Jacob A. Barkey Memorial Fund
Susan M. Raleigh

$5,000 – $9,999
Steinberg
The Hurlbert Family Foundation
Estate of Jay Eberly

$2K – $4,999
Bristol Myers Squibb Foundation, Inc.
Jennfier L. Brorsen and Richard M.
Bristol-Myers Squibb

$1,000 – $2,999
MESSAGE FROM THE CHIEF FINANCIAL OFFICER

In the link below, we provide detailed financial statements for the Cancer Research Institute (CRI) for fiscal year 2014 (July 1, 2013, to June 30, 2014). The graphics above illustrate a breakdown of revenue and expenses in both real dollar and pro forma terms. We at the Cancer Research Institute hold accountability, transparency, and efficiency as core values in our work. As a result, we devote more than 88% of our operating expenses to programs. In fiscal year 2014, this meant that we invested more than $22 million in research and education programs. The 2014 financial highlights are above.

To CRI’s friends and supporters, we thank you for your contribution as we work to fund science that will have the most impact in bringing cancer immunotherapy to more patients. Together, we will conquer cancer.

Alfred R. Massidas
Chief Financial Officer

2014 FINANCIAL HIGHLIGHTS

PUBLIC SUPPORT & REVENUE

$27.5MM

OPERATING EXPENSES

$25.0MM

Contributions $19.1MM, 70%
Investments & Other $3.2MM, 12%
Special Events $3.0MM, 10%
Bequests & Memorials $2.2MM, 8%
For more than 60 years, scientific and philanthropic leaders have steered the Cancer Research Institute with their long-term, significant commitments to the Institute. They support CRI and its mission not only through academic and financial support, but also through astute governance and active participation in the organization’s initiatives.
Young Philanthropists Council

Chair
Samantha Knapik
On Deck Capital
New York, NY

Vice Chair
Emily Slater
Cantor Fitzgerald/BGC Partners
New York, NY

Secretary
Priyanka Sawhney
JP Morgan
New York, NY

Treasurer
Eric Adams
JP Morgan
New York, NY

Members
Megan Bannigan
Debevoise & Plimpton
New York, NY
Robi Beltrani
GlobeTax Services, Inc.
New York, NY
Anne Bracaglia
Christie’s
New York, NY
Christina Brown
Healthfirst
New York, NY
Emily Craft
The Peter and Carmen Lucia Buck Foundation, Inc.
New York, NY
Kate Cuzco
New York State Assembly
New York, NY
Alexis Housley
Ralph Lauren
New York, NY
Mariana Kaplan
ConMed Corporation
New York, NY
Sean Kiley
The New York Retail Report
New York, NY
Nicole Negrin
Ralph Lauren Corporation
New York, NY
Kristen Ruthfelder
Oct. 27th Capital Management
New York, NY
Josephine Voia
United States Attorney’s Office, EDNY
Brooklyn, NY
Kendall Wrigley
Vitech Systems Group
New York, NY
Kate Cuzco
New York State Assembly
New York, NY
Alexis Housley
Ralph Lauren
New York, NY
Mariana Kaplan
ConMed Corporation
New York, NY
Sean Kiley
The New York Retail Report
New York, NY
Nicole Negrin
Ralph Lauren Corporation
New York, NY
Kristen Ruthfelder
Oct. 27th Capital Management
New York, NY
Josephine Voia
United States Attorney’s Office, EDNY
Brooklyn, NY
Kendall Wrigley
Vitech Systems Group
New York, NY
CRI Staff
Senior Staff
Jill O’Donnell-Tormey, Ph.D.
CEO and Director of Scientific Affairs
Brian M. Brewer
Director of Marketing and Communications
Lyne A. Hamer
Director of Grants Administration and Special Events
Alfred R. Masvidal
CFO and Director of Human Resources
Sharon Slade
Director of Strategic Initiatives
Staff
Hannah Bolliste
Development Associate
Emily Heck
Online Community Manager
Rupinder Kaur
Database Administrator
Erik Kim
Events Coordinator
Michelle Liew
Digital Media Manager
CRI Staff
Senior Staff
Jill O’Donnell-Tormey, Ph.D.
CEO and Director of Scientific Affairs
Brian M. Brewer
Director of Marketing and Communications
Lyne A. Hamer
Director of Grants Administration and Special Events
Alfred R. Masvidal
CFO and Director of Human Resources
Sharon Slade
Director of Strategic Initiatives
Staff
Hannah Bolliste
Development Associate
Emily Heck
Online Community Manager
Rupinder Kaur
Database Administrator
Erik Kim
Events Coordinator
Michelle Liew
Digital Media Manager
Emily Livingstone
Development Associate
Vanessa Luczy, Ph.D., MBA
Senior Research Analyst
Alessandra Mukle
Associate Director of Communications
Shaod Ngpoon
Office Manager / Workplace Giving Campaign Manager
Kasturi “Devi” Sharma
Donations Processing Manager
Maria Streacavage
Manager, Corporate and Foundation Giving
Matthew Tontonoz
Science Writer
Dersa Upson
Grants Administrator
Jasmine Wright
Assistant to the CEO
Ging Hu Zhang
Assistant Controller
Consultant
Adam Kehoe
Managing Director, Clinical Accelerator
Coley to Cure
Read more about CRI’s pioneering role in developing cancer immunotherapy over the past six decades at www.bit.ly/CRIretrospective.

Young Philanthropists Council members Alexis Feldman, Emily Slater, Samantha Knapik, Kate Cuzco, and Sean Kiely

CANCER RESEARCH INSTITUTE 2014 ANNUAL REPORT 53
GIVING TO THE CANCER RESEARCH INSTITUTE

The Cancer Research Institute (CRI) has a long tradition of responsible stewardship of donor funds. We receive the highest marks from charity watchdog groups, including an “A” grade from the American Institute of Philanthropy and a four-star rating from Charity Navigator. CRI also meets all 20 standards of the Better Business Bureau Wise Giving Alliance. Donors to CRI can be confident that their donation, in any amount, will do the most good possible. To help you make the most fitting and fulfilling contribution to CRI, please contact our Development Office at (212) 688-7515 or send an email to advancement@cancerresearch.org.

OUTRIGHT GIFTS

Cash Donations by check or credit card may be sent directly to CRI or processed through our secure website at www.bit.ly/CRIdonate.

Property other than cash Donating securities, automobiles, and similar properties can often be a tax-efficient method for making a meaningful gift to CRI.

Workplace giving programs Ask your human resources department if your company has a plan through which you can contribute to CRI.

Matching gifts Contact your human resources department to inquire if your employer matches contributions or browse our online matching gift database to see if your company is listed at www.bit.ly/CRImatch.

PLANNED GIFTS

Planned gifts include bequests made through a living trust or inclusion of the Cancer Research Institute in your will as a beneficiary of cash, securities, or personal property. Your bequest should include the Institute’s federal tax ID number (13-1837442) and a statement such as the following:

“IT bequeath to the Cancer Research Institute, a not-for-profit corporation of the State of New York, having its principal office at One Exchange Plaza, 55 Broadway, Suite 1802, New York, New York 10006, the sum of $_____ for its general operating purposes.”

You should, of course, always consult your attorney and tax advisor for the formal writing of your will and to discuss the tax implications of any form of planned giving.

COMMUNITY FUNDRAISING

Want to hold a bake sale to raise money for cancer research? How about a fashion show, dinner, or a music concert? Maybe you’re getting married and would prefer guests give to charity. We offer support for these and other fundraising ideas. Visit our website at www.bit.ly/CRIfundraise to learn more about how you can organize your own special event.

FOR CORPORATE FRIENDS

No one organization, company, or group can solve the cancer problem alone. It takes collaboration to change the course of cancer. CRI welcomes opportunities to work together with others to develop research, educational, and awareness-building programs designed to advance cancer immunotherapy. Contact Sharon Slade at sslade@cancerresearch.org or (212) 688-7515 x230 to learn more.

Since 1953, the Cancer Research Institute has invested $282 million to fund nearly 3,000 scientists all over the world.

Sarah Trifari, Ph.D., CRI postdoctoral fellow at La Jolla Institute for Allergy and Immunology
NATIONAL HEADQUARTERS

One Exchange Plaza
55 Broadway, Suite 1802
New York, NY 10006
Tel. (212) 688-7515
Toll-Free (800) 99-CANCER
Fax (212) 832-9376
Email info@cancerresearch.org

VOLUNTEER OFFICES

344 Hauser Boulevard, Unit 422
Los Angeles, CA 90036
Tel. (323) 935-2520

101 University Avenue, 4th Floor
Palo Alto, CA 94301
Tel. (650) 365-6441

80 Field Point Road
Greenwich, CT 06830
Tel. (203) 622-0522

184 Fisher Avenue
Brookline, MA 02445
Tel. (617) 566-0100

6000 Uptown Boulevard, Suite 309
Albuquerque, NM 87110
Tel. (505) 234-6255

2802 Flintrock Trace, Suite 220
Austin, TX 78738
Tel. (512) 610-5530

122 River Run Road
Lancaster, VA 22503
Tel. (703) 759-0835

www.cancerresearch.org